Prace.rovnou.cz
prace.rovnou.cz > Slovníček pojmů > zkratka nebo pojem:

feedback 

Zpětná vazba, názor. Čte se to [fídbek]. Ačkoli je feedback původně technický pojem popisující zpětnou vazbu, v pracovní praxi jde o vyslovení nebo napsání názoru. Když mě někdo žádá o feedback, chce vědět, co si o té jeho věci myslím, přičemž cíleně žádá spíše o kritiku než o pochvalu. Ačkoli se feedback používá k předání spíše negativních informací, samotné slovo feedback si udržuje pozitivní náboj, protože umožňuje a předpokládá budoucí nápravu či vylepšení. Sousloví "dostat feedback" by proto nemělo znamenat totéž, co "dostat čočku". Ale občas už znamená. :-/

Technický význam feedbacku

Teď k tomu technickému významu, který úplně nesouvisí s hledáním práce, ale když už to píšu...

Feedback je prostě zpětná vazba, což ve fyzice, ekonomii, kybernetice a příbuzných oborech znamená, stav, ve kterém se objekt nachází, má vliv na jeho následující chování.

Pozitivní zpětná vazba

Třeba čím je semenáček rostliny větší, tím víc roste, protože získává víc zdrojů pro růst. Čím víc táborák hřeje, tím víc zapaluje další dříví, které do něj přiložím. Čím víc koukám po nějaké holce, které se líbím, tím víc kouká ona po mně. To byly příklady tak zvané pozitivní zpětné vazby. Pozitivní zpětná vazba není vůbec pozitivní jev, protože systém s pozitivní zpětnou vazbou diverguje, nemá stabilní stav. Může to být i nezezpečné, protože od táboráku takhle může chytit tábor a z koukání po holkách je najednou utírání zadků miminům. Čím víc se místnost plní bordelem, tím spíš ten bordel bude narůstat, jak v ní lidé při hledání věcí přehazují ostatní věci.  Chřipečka se šíří populací a najednou je z ní epidemie. Kromě té divergence je další problém je v tom, že se špatně predikuje vývoj takového systému, protože dlouho nic a najednou průser, ale předem se nedá říct, kdy to bude. Proto mají technicky založení lidé pozitivní zpětnou vazbu neradi, protože jim znemožňuje předpovídat, jak se bude systém vyvíjet. Žádný strom ale neroste do nebe. Systém se ustálí, když v něm začínají místo pozitivních zpětných vazeb převládat naopak negativní zpětné vazby.

Negativní zpětná vazba

Nejčastěji se negativní zpětná vazba vysvětluje na pružině. Čím víc ji vytáhnu jejího normálního stavu, tím víc síly vyvíjí, aby se vrátila do svého původního stavu. Čím víc budete lidi trollit na Twitteru, tím víc vám to dají sežrat, abyste netrollili. Čím víc vám bude sluníčko svítit do kanclu, tím víc bude fučet klimatizace, aby to vychladila. Negativní zpětné vazby rádi používají technologové při návrhu systémů, které mají být stabilní. Navrhují regulátory. Ty fungují na principu negativní zpětné vazby jako třeba ta klimatizace, která má nastavenou požadovanou teplotu. 

Negativní zpětná vazba je prostě v technologiích vnímaná pozitivně, protože způsobuje stabilitu. To je škoda, protože se to pak plete - pozitivní zpětná vazba je ta blbá, která věci rozbíjí, kdežto negativní zpětná vazba je ta hodná, která drží věci pohromadě.

Zpětná vazba matematicky

Z popisu určitě chápete, že pro popis pozitivní zpětné vazby hledáme funkci "čím větší má hodnotu, tím víc roste". Takovu funkcí je evidentně exponenciála (možná znáte ten vtip, jak se funkce bojí derivace, jenom exponenciála se nebojí, protože jí derivace nezmění: to je tím, že exponenciála má takovou míru růstu, jakou má hodnotu). Pozitivní zpětná vazba se tedy dá modelovat vztahem y=e^x.

Pro negativní zpětnou vazbu hledáme funkci, která má tím větší změnu, čím menší je. Přirozeně se nabízí funkce y=e^-x, tedy zrcadlová exponenciála, která od nuly doprava klesá. Takové negativní zpětné vazbě se někdy říká útlum. Vyskytuje se v jednoduchých systémech bez setrvačnosti

Trochu složitější je to ve fyzice, populační dynamice nebo v ekonomii, kde mají systémy jistou setrvačnost. Tam pro modelování negativní zpětné vazby hledáme takovou funkci, kde je druhá derivace (změna změny) přímo úměrná opaku hodnoty. (Druhou derivaci potřebujeme proto, že fyzikálně odpovídá síle: první derivace je rychlost a druhá derivace je zrychlení.) To už chce trochu víc uvažování. Hledáme funkci, která když má hodnotu -1, tlačí se co nejrychleji k nule, ale když má hodnotu 0, nechá se překmitnout a nic nemění. Takovou funkcí je třeba sinus (nebo cos nebo -sin nebo -cos, které jsou ale vůči sobě jen horizontálně posunuté). To jsou všechno harmonické funkce, které střídavě klesají a rostou. Negativní zpětná vazba se setrvačností systému se tedy projevuje jako kmitání či oscilace.

Kdo má rád komplexní analýzu, rychle si všimne, že v komplexním oboru je jak sinus, tak exponenciála vyjádřena stejnou komplexní funkcí, tedy y = e ^ (x + zi), kde x je reálná část exponentu, odpovědná za pozitivní zpětnou vazbu (může být i záporná a pak způsobuje místo růstu tlumení) a zi je imaginární část, která tam dělá to kmitání, protože y = e ^ zi je ve skutečnosti sinus. V praxi je potom výsledné chování systému dané součinem exponenciály a harmonické funkce. Tedy například struna na kytaře kmitá (sinus), ale čím dál tím míň - je tlumená (to tlumení zařizuje exponenciála se záporným koeficientem).

Sorry za technickou odbočku, už ten čaj nebudu pít.


Stránky prace.rovnou.cz píše a připravuje Dušan Janovský. Není tu žádná reklama, PR ani affil odkaz.